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INTRODUCTION

In many robotic and remote operation applications, depth (or range) information at
various points in the scene is required.  These include autonomous navigation, landing site
selection, scene reconstruction, or  postprocessing interpretation of video footage.  

Theoretically, depth, motion, and optical flow (generated by the relative movement
between the camera and scene) are three parameters of a circular problem:

Given the camera motion and three-dimensional structure of the scene, we can generate the
optical flow, and hence construct a sequence of images of the moving scene (3-D
simulation).
Given knowledge of the three-dimensional scene and the optical flow, we can compute the
motion which generated it (motion recovery).  
And finally, given the camera motion and the resulting optical flow, we can extract depth
information and reconstruct the three-dimensional scene that gave rise to the flow (scene
reconstruction).

When only the optical flow is available, the problem becomes much harder, and the exact
depth and motion cannot be determined [Horn, 1986].  Only the relative depth between various
scene points, and the relative motion (or direction) can be recovered.  Recovering depth and
motion from a sequence of images only is an active research area.  For example, Horn [1986]
described a least-squares method wherein an iterative process may be used to solve a set of seven
simultaneous equations involving the optical flow.   Fermuller presented a tracking technique
[1991] and a pattern-matching technique [in Aloimonos, 1993] to estimate motion parameters.   
This general problem is outside the scope of this report.

We concentrate on finding the depth given a sequence of images and known motion or
direction of motion.  This problem is appropriate for many real-world applications, where robot
(and camera) motion can be dictated by open-loop control, or motion information can be
supplied by non-visual means, such as wheel encoders, accelerometers, gyroscopes, or other
non-visual feedback control schemes.  Albus [1990] computed range given known motion under
various conditions using the optical flow.  However, the optical flow itself is difficult to compute
from a sequence of images (only a component of it, the normal flow, is easily computable).  We
will show how to obtain range data without having to find the optical flow itself, and analyze the
method's sensitivity to inaccuracies in the known motion.  Since the method uses only temporal
and spatial first derivatives, which can be computed easily from any two consecutive frames, the
depth map can be computed quickly in one pass, and thus is more suitable for real-time
navigational problems.  Finally, we describe the result of this method when applied to a
well-known sequence of test images.
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BACKGROUND

We will first discuss several concepts necessary for the development of the algorithm:
namely,  the difference between the optical flow and the normal flow, camera geometry,
computation of the normal flow, and the focus-of-expansion.

OPTICAL FLOW AND NORMAL FLOW

As the camera moves in a static environment or as an object moves in front of the camera,
relative motion occurs between the camera and the objects.  The motion field assigns velocity
vectors to points in the camera image.  These vectors are projections of the corresponding
real-world motion vectors.  On the other hand, the optic flow is the apparent motion of the image
pattern, which is not necessarily the same as the motion field.  Consider a fixed object being
illuminated by a moving light source.  The motion field is zero since the object is stationary.
However, the optic flow is non-zero, since the brightness pattern in the image changes.  Except
for a few selected scenarios, we expect the optic flow to be the same as the motion field.  This
assumption is used by researchers in deriving useful information about the scene from visual
motion.  Figure 1 illustrates the calculated optical flow generated by a spinning sphere [Horn,
1986].

Figure 1.   The optical flow computed by an iterative algorithm on simulated 
 data of a spinning sphere on a randomly patterned background [Horn, 1986].

    Note that erroneous vectors sometimes occur at boundaries, where the bright-
                ness is discontinuous.

Many vision algorithms depend on the assumption that the optic flow is available to the
processing system.  However, when camera motion is not known, accurate optic flow is usually
not available due to a phenomenon known as the aperture problem, as demonstrated in figure 2.
As a line of constant brightness moves across the image, which vector represents the correct
optic flow at point P?  That is, to which position (Q1, Q2, ...) has point P moved?  This illustrates
the fact that the optic flow is not uniquely determined by local computations.  It is often
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estimated by interpolating between locations where it is available (such as brightness corners or
specific scene features), by making assumptions on its smoothness (which is often incorrect) or
using coarse-to-fine region-based techniques [Barron et al., 1992], or by iterative solutions
[Ballard & Brown, 1982].  The normal flow, however, is unique and always simple to derive.  It
is the component of the optical flow perpendicular to the brightness contour (i.e., along the
brightness gradient--PQ2 in figure 2).  We will give the derivation of the normal flow after we
introduce the camera geometry in the next section.

 Figure 2.   The aperture problem.

CAMERA GEOMETRY

We define the geometry of the camera and scene as in figure 3.  The image plane is
placed at a focal length f from the lens O along the optical axis, which is our Cartesian Z axis.
Technically, the image plane appears on the other side of the lens.  However, we have placed the
image plane on the same side with the scene for convenience (the input devices normally invert
the projected image so that in effect the output image appears as depicted).  

Figure 3.   Perspective projection of camera and scene.
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From the perspective projection, we can see that any point (X,Y,Z) in the scene is
projected on to the image plane at (x,y) where:

COMPUTATION OF THE NORMAL FLOW

Let E(x,y,t) be the image brightness at time t at image point (x,y).  After the motion has
occurred, the same image brightness will appear at point (x+δx, y + δy) at time t +δt.  Thus, 

Assuming that image brightness varies smoothly with x, y, and t, we can use the Taylor
series expansion on the left-hand side to get

Canceling E(x,y,t), dividing both sides by δt, and taking the limit as δt approaches 0, the higher
order terms drop out and we are left with 

With u(x,y) = dx/dt and v(x,y) = dy/dt defined as the components of the optical flow along the X
and Y axes, we have the well-known optical flow constraint equation

which can also be expressed as a dot product:

Since the brightness gradient is and the optical flow is (u,v), the normal flow (the


∂E
∂x

, ∂E
∂y




component of the optical flow in the direction of the brightness gradient) is

with the minus sign reflecting the fact that the normal flow is in the opposite direction to the

gradient vector whenever  is positive (e.g., at the leading edge of a bright object), and vice∂E
∂t

versa (the gradient vectors point toward brighter areas).

x =
Xf
Z
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Z
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Note that all computations in deriving the normal flow involve only local derivatives and
do not require advanced knowledge of object or camera motion.  It is the only representation of
image motion that can be robustly computed [Aloimonos, 1990].

THE FOCUS OF EXPANSION

As the camera moves relative to the static environment, or as an object in the scene
moves with respect to the camera, the translational components of the optic flow converge at a
point on the image plane, the focus of expansion (FOE)--see figure 4.  The FOE is very useful in
navigation problems because it is the projected image of the ray along which a camera
undergoing translational motion moves.  If the FOE falls inside an object, that object will collide
with the camera.

Figure 4.  The FOE from an optical flow map.

If we use the camera geometry of figure 3, a rigid object moving with translational
velocities (U,V,W) (with no rotation) that was at (X, Y, Z) initially will be imaged at (x', y') at
time t, where

Since the FOE is the image of the point at t = minus infinity, we let t go to   and obtain−∞

on the image plane.   

If a rotational velocity is involved, then the FOE is tied to the center of rotation.  This is
because rotation about any arbitrary center can be expressed as rotation about another center plus
a compensating translation.  The motion of any point (X,Y,Z) on an object undergoing
translational velocities (U,V,W) and rotational velocities (A,B,C) around a center of rotation
(X0,Y0 ,Z0) can be expressed as:

FOE


x ,y 

 = 


(X + Ut)f
Z + Wt

,
(Y+ Vt)f
Z + Wt


 .

FOE= 

Uf
W

,
Vf
W
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Now if we introduce another arbitrary point, (X1,Y1,Z1), we can rewrite the above equation as

which is an expression of motion of the point (X,Y,Z) around the new center of rotation
(X1,Y1,Z1).  The second cross product, which does not involve the variables (X,Y,Z), is the
compensating translation for the entire object.

Figure 5 demonstrates this property by showing the same optical flow vectors
decomposed into two different sets of translational and rotational flows corresponding to two
different centers of rotation, and their appropriate FOEs.  The FOE is most useful under purely
translational motion or when the rotational component is known.

RANGE DERIVATION

DERIVING RANGE WITH KNOWN CAMERA MOTION

Often in mobile robotics applications, estimates of the robot's motion are available from
non-visual sources.  When camera motion is known, the problem of determining distances to
objects in the environment is much simplified.  The full optical flow is not required, but only the
normal flow (or equivalently, the local derivatives), which can be robustly computed.

Computing Range Using Local Image Derivatives

Let the translational velocities of the camera be (U,V,W) and the rotational velocities 
be (A,B,C) with respect to the origin.  Using the same coordinate system as stated previously, we
can express the velocity of any point (X,Y,Z) on a moving object as

which can be rewritten as








X
.

Y
.

Z
.








=





U
V
W






+





A
B
C






×





X − X0

Y− Y0

Z − Z0






.








X
.

Y
.

Z
.








=





U
V
W






+





A
B
C






×





X − X1

Y− Y1

Z − Z1






+





X0 − X1

Y0 − Y1

Z0 − Z1






×





A
B
C





,


X

.
,Y

.
,Z
. 
 = −(U,V,W) − (A,B,C) × (X,Y,Z),

X
.

= −U − BZ+ CY,

Y
.

= −V − CX+ AZ,

Z
.

= −W− AY+ BX.

6



7

COR FOE

T

R

R

T

T

R

R
T

COR

T

T

T

R

R

R

T

R

FOE

Figure 5.   Effect of moving the center-of-rotation (COR) on the focus-of-expansion
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We can then express the optical flow (u,v) as

or

Substituting these definitions of u and v into the normal flow equation (1), and

abbreviating the unit gradient vector, , we have(nx,ny) =



∂E
∂x , ∂E
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2

The only unknown in this equation is Z, the depth dimension of the point of interest.
Thus, Z can be computed as

or, in terms of the partial derivatives,

Note that Z cannot be found where   Un = 
A
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(where the normal flow is due entirely to camera rotation).  This is because only the translational
component of the optical flow (and hence translational component of the normal flow) is
dependent on depth.

Once Z is found, the other space coordinates are also known, since .  X = xZ
f

andY = yZ
f

Therefore, given any point (x,y) in the image and the camera velocities, the position of the
corresponding point in the real world (and hence its range) can be computed directly from the
normal flow or the spatial and temporal derivatives.  Of course, as with all flow methods, the
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range can be found only for regions of high texture, or at brightness edges, where the derivatives
are non-zero.  The depth of homogenous regions must be interpolated from the surrounding
edges.

Accuracy Analysis

Accuracy of the Normal Flow

Many authors have criticized the accuracy of  gradient-derived optical flows [Albus,1990;
Barron et al., 1992].  Some of these criticisms also apply to our gradient-based normal flow
derivation technique.

Since, from equation (1), the normal flow has magnitude

we can see that quantization errors and noise-contributed errors will be minimized where both
the spatial brightness gradient and temporal change are greatest.  Fermuller and Aloimonos
[1991] have also shown that the normal flow most accurately represents the normal component
of the physical motion field where the brightness gradients are large.  Therefore, in practice we
should only compute the normal flow at points where the spatial derivatives exceed a minimum
threshold.   These factors often result in a sparse range map.

Low-pass filtering is necessary for most flow-determination methods [Barron et al.,
1992], and especially so for derivative-based techniques, since smoothness in brightness
variations is assumed in the derivation of the optical flow equation.  Low-pass filtering helps
enable derivatives to be taken at step edges and helps attenuate the effects of noise and
quantization errors, but cannot undo the effects of aliasing due to spatial or temporal frequency
components that are higher than the sampling rate.  On the other hand, smoothing also removes
sharp features that contain the most accurate information.  

Albus [1990] noted that besides aliasing problems, smoothing requirements, and sparse
output maps, gradient-based techniques also suffer from the non-uniform sensitivity of
photodetectors in any array, and from low-frequency thermal drift in detector noise.   Even so,
derivative-based methods are the simplest and fastest of all flow-determination techniques, and
most appropriate for real-time implementation on conventional hardware.  The combination of
speed and lack of accuracy favors their use in real-time qualitative vision techniques [Aloimonos,
1990].

Computing Derivatives and Gradients in Discrete Domain

There are several ways to compute derivatives in the discrete domain [Rosenfeld & Kak,
1982].  The usual method is to take first-order differences along the desired direction, either

Un =
∂E
∂t
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∂E
∂y




2
,
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using two adjacent pixels (x and x+1) or across the current pixel (x-1 and x+1).  The first method
produces a poorer approximation [Cheney & Kincaid, 1980], unless the result is associated with
the crack between the two pixels.  This concept of associating derivatives with cracks between
pixels was used by Horn [1986].  He performed the differentiation using first-order differences at
the center of a three-dimensional cube.  The derivative along any axis is taken as the difference
between two slices of image data averaged in a plane perpendicular to that axis (see figure 6).

The derivative can be further improved by using 4 or more points (or averaged slices)
around the point of interest, instead of the simple difference.  For example, a more accurate
estimate of the first derivative is [Cheney & Kincaid, 1980]:

We use the combination of this formula and slice averaging for computing derivatives.  

Once the spatial derivatives,  and , are found, the brightness gradient is normally∂E
∂x

∂E
∂y

computed as .  However, with the square pixel tesselation used by most


∂E
∂x




2
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∂E
∂y




2

imaging systems, this often leads to biases in one direction over the others.  The biases
associated with the two derivative methods (associated with pixels and with cracks between
pixels) are illustrated in figure 7.  The example shows a step edge at which the gradient should be
1 (and it would be if the edge was vertical or horizontal).  However, as shown in the table in
figure 7, the gradients associated with this diagonal edge are either over or under 1, caused by

y

x

t

1 21
2

1

2

Figure 6.   "Slice averaging" method:  the derivatives are associated with the center
of the cube.  A derivative along any one axis is the difference between two slices in
the plane perpendicular to that axis.  Thus,

∂E(x,y, t)
∂t

≈ 1
4





E1,1,2+ E1,2,2+ E2,1,2+ E2,2,2


 − 

E1,1,1+ E1,2,1+ E2,1,1+ E2,2,1






f (x3) ≈
f(x4) − f(x2)

2
−

f(x5) − 2f(x4) + 2f(x2) − f(x1)
12

.
(4)

10



errors in the derivatives themselves.  These errors are associated with the square pixel tesselation,
and can only be eliminated if the camera and framegrabber manufacturers move to another type
of tesselation, such as a hexagonal one.  This is unlikely to happen in the near future.

Errors in Translational Velocities

Assume that there is no rotational motion.  Let (U', V', W') be the true translational
velocities, where

and (U,V,W) are the velocities used for our computations.  Then from Eq. (3), the true Z
coordinate should be

1 1 1 1

 y+1 0 1 1 1

   y 0 0 1 1

0 0 0 1

 x x+1

∂E/∂x ∂E/∂y Gradient

Centered on pixel (x,y)     1     1 2

Centered in the middle of the square defined by    1/2    1/2 1/ 2

       x, x+1, y, & y+1 (use 2-pixel averaged slices)

Correct values (in continuous domain) 1/ 2 1/ 2   1

Figure 7.   A diagonal two-dimensional edge showing errors associated with
the discrete square pixels.

(U ,V ,W ) = (U + ∆U,V + ∆V,W+ ∆W)

Z =
[−(U + ∆U)f + x(W+ ∆W)]nx + [−(V + ∆V)f + y(W+ ∆W)]ny

Un

= Z +
(−∆Uf + x∆W)nx + (−∆Vf + y∆W)ny

Un

= Z +
(∆Uf − x∆W)∂E

∂x + (∆Vf − y∆W)∂E
∂y

∂E
∂t
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Thus, for the case of purely translational motion, inaccuracies in the knowledge of U and V
(motion parallel to the image plane) will result in a constant shift (more prominent for longer
focal lengths) of the computed depth over the whole image.  Inaccuracies in W will result in
linearly increasing depth errors away from the optical axis.

Errors in Rotational Velocities

We will examine the case where rotation is being kept as close to zero as possible, but not
perfectly.  Again, from equation (3), the unwanted rotational velocities, , show up in(∆A,∆B,∆C)
the true range as

The right-hand side of the product is the error multiplier, which approaches 1 where Un  (or the
temporal change) is large.  Thus, we should only look at these pixels for the most accurate results
when rotational motion cannot be held to exactly zero.

DERIVING RELATIVE RANGE WITH KNOWN TRANSLATIONAL DIRECTION

In some instances, the exact translational velocities are difficult to obtain, while the
direction of travel and rotational motion are much easier to establish.  For example, the camera is
mounted on a moving platform on a straight rail.  The translational direction is the angle between
the rail and the camera.  The rotational motion is controlled by the camera's pan-and-tilt unit, but
the translational velocity is tied to the rail platform and is not easily accessible.  In many other
instances, while the velocities are difficult to obtain, the straight course of travel of a platform
can also be easily accomplished with simple accelerometers, gyroscopes, steering lock, or by
applying equal torque to the wheels of a land robot.  For these cases, we can still obtain the
relative range to various points in the scene.  

When there is forward motion (i.e., ), knowing the direction of travel means that theW≠ 0
FOE, the point (x0, y0) in the image where the line of travel intersects the image plane, is known.

Z =
(−Uf + xW)nx + (−Vf + yW)ny
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f
+ f) + ∆Cy
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f
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=
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× 1

1 − 1
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− ∆B(x2

f
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f
+ f) − ∆B
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− ∆Cx
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= Z × 1

1 + 1
∂E
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− ∆B(x2

f
+ f) + ∆Cy


∂E
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∆A(y2

f
+ f) − ∆B
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− ∆Cx


∂E
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.
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Since , we can rearrange equation (3) and get(x0,y0) = (Uf/W,Vf/W)

Thus, the relative range to points in the image can be obtained with just the normal flow
or local derivatives.  The exceptions are points where the translational component of the normal
flow is zero--and at the FOE, , but the flow is also zero there.  The Z/W ratio is known as(x0,y0)
the time to adjacency (the time it takes for an object to impact an infinitely large image plane).
In the neighborhood of the FOE (which is where the camera is headed), this ratio is also known
as the time to collision.  

With a relative-range map, the true range to all available points can be computed if the
range to one of the points is found.  This can be done by many different methods, including
simple triangulation using a laser and the same video camera [Nguyen, 1995]. 

In the absence of rotation, we obtain an even simpler set of equations for the relative
range with only direction of motion known:

for W≠ 0.

If the motion is frontal parallel ( ), then W= 0

Z
W

=
(x − x0)nx + (y− y0)ny

Un − 
A

xy
f

− B(x2

f
+ f) + Cy

nx − 

A(y2

f
+ f) − B

xy
f

− Cx

ny

=
(x0−x)∂E

∂x
+(y0−y)∂E

∂y

∂E
∂t

+

A

xy
f

−B(x2

f
+f)+Cy


∂E
∂x

+

A(y2

f
+f)−B

xy
f

−Cx


 ∂E

∂y

.
(5)

Z
W

= (x−x0)nx+(y−y0)ny

Un
=

(x0−x)∂E
∂x

+(y0−y)∂E
∂y

∂E
∂t

(6)

Z
Uf

= −nx

Un
=

∂E
∂x
∂E
∂t

for motion along the horizontal axis,

Z
Vf

=
−ny

Un
=

∂E
∂y

∂E
∂t

for motion along the vertical axis, and

Z
Vf

=
−U

V
nx − ny

Un
=

U
V

∂E
∂x

+ ∂E
∂y

∂E
∂t

for diagonal motion.
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TESTING

To test the method, we used the familiar NASA Coke can image sequence (figure 8a) ,
available from many image archives.  The only external information used was that the sequence
contains only translational motion, and the motion was toward the center of the Coke can.   The
images were passed through a Gaussian smoothing filter with convolution stencil:

Three frames were used.  One half of the pixel brightness difference between the third
and the first frame was used as the temporal derivatives.  Since the images were prefiltered, this
approximates the "slice difference" method of computing derivatives, but with the results
associated with the pixels and not the "cracks."  Equation (4) was used on the second frame for
computing spatial derivatives.  The derivatives were then substituted into equation (6) to
compute the relative range.  As expected, the method was sensitive to sampling errors.  About
5% of the pixels gave negative values for the range.  These were obviously erroneous and were
discarded.  The resulting range image is shown in figure 8b, where dark pixels correspond to
farther points, and lighter pixels to progressively closer points.  White areas denote locations
where no information was available (no temporal or spatial change) or where negative results
were obtained.  

1 3 4 3 1

3 6 8 6 3

1/110 • 4 8 10 8 4

3 6 8 6 3

1 3 4 3 1
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Figure 8.  (a) One frame from the NASA Coke can sequence.  (b) Range image obtained.



Examining figure 8b, we found that, in general, the results gave correct relative distances
to the various objects.  The outline of the metal flange was lightest, followed by the pencils and
Coke can.  The outlines of the sweater and the ring on the back board were darkest.  Errors can
also be noted.  The horizontal dark bar in the range image (under the box) was erroneous and
probably due to a combination of the extreme contrast of the white strip in the foreground and
the filtering operation (which spreads out a few bad points along the back edge of the strip).
However, most of the errors appear to be "salt and pepper" types, and should be easily removed
using traditional image processing and computer vision techniques, such as median filtering,
region growing, etc.

 

SUMMARY

Given no knowledge of the motion, deriving range from image motion is a difficult
problem.  However, in many instances the motion is either known within some degree of
accuracy, or the direction of movement is known.  We described how range can be computed
from a sequence of images given knowledge of the motion, and supplied an analysis of the
accuracy of the results based on the accuracy of the known motion.  We also discussed how
relative range can be computed when only the direction of movement is known, and described an
experiment conducted on a sequence of calibrated data.
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